Module moog_demos.example_configs.functional_maze
Maze task with predators, prey, and boosters.
The predators (red circles) chase the agent. The agent receives reward for catching prey (yellow circles), which disappear upon capture. The boosters (blue triangles) temporarily increase the agent's speed. The portals (white squares) teleport the agent from one place to another.
Functions
def get_config(_)
-
Expand source code
def get_config(_): """Get environment config.""" ############################################################################ # Sprite initialization ############################################################################ # Agent agent_factors = distribs.Product( [distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9)], shape='circle', scale=0.1, c0=0.33, c1=1., c2=0.7, ) # Predators predator_factors = distribs.Product( [distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9)], shape='circle', scale=0.1, c0=0., c1=1., c2=0.8, ) # Prey prey_factors = distribs.Product( [distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9)], shape='circle', scale=0.1, c0=0.2, c1=1., c2=1., ) # Boosters booster_factors = distribs.Product( [distribs.Continuous('x', 0.1, 0.9), distribs.Continuous('y', 0.1, 0.9)], shape='triangle', scale=0.1, c0=0.6, c1=1., c2=1., ) # Portals portal_factors = dict(shape='square', scale=0.1, c0=0., c1=0., c2=0.95) portal_sprites = [ sprite.Sprite(x=0.125, y=0.125, **portal_factors), sprite.Sprite(x=0.875, y=0.875, **portal_factors), ] # Walls wall_color = dict(c0=0., c1=0., c2=0.5) island_wall_shape_0 = np.array( [[0.2, 0.2], [0.4, 0.2], [0.4, 0.4], [0.2, 0.4]]) island_wall_shapes = [ island_wall_shape_0, island_wall_shape_0 + np.array([[0., 0.4]]), island_wall_shape_0 + np.array([[0.4, 0.4]]), island_wall_shape_0 + np.array([[0.4, 0.]]), ] island_walls = [ sprite.Sprite(shape=shape, x=0., y=0., **wall_color) for shape in island_wall_shapes ] boundary_walls = shapes.border_walls(visible_thickness=0.05, **wall_color) walls = boundary_walls + island_walls # Callable sprite generators agent_generator = sprite_generators.generate_sprites( agent_factors, num_sprites=1) predator_generator = sprite_generators.generate_sprites( predator_factors, num_sprites=1) prey_generator = sprite_generators.generate_sprites( prey_factors, num_sprites=lambda: np.random.randint(2, 5)) booster_generator = sprite_generators.generate_sprites( booster_factors, num_sprites=2) # Create callable initializer returning entire state def state_initializer(): portals = portal_sprites agent = agent_generator(without_overlapping=walls) predators = predator_generator(without_overlapping=walls + agent) boosters = booster_generator(without_overlapping=walls + agent) prey = prey_generator(without_overlapping=walls) state = collections.OrderedDict([ ('walls', walls), ('portals', portals), ('boosters', boosters), ('prey', prey), ('predators', predators), ('agent', agent), ]) return state ############################################################################ # Physics ############################################################################ agent_friction_force = physics_lib.Drag(coeff_friction=0.25) predator_friction_force = physics_lib.Drag(coeff_friction=0.05) predator_random_force = physics_lib.RandomForce(max_force_magnitude=0.02) prey_friction_force = physics_lib.Drag(coeff_friction=0.02) prey_random_force = physics_lib.RandomForce(max_force_magnitude=0.02) predator_attraction = physics_lib.DistanceForce( force_fn=physics_lib.linear_force_fn(zero_intercept=-0.002, slope=0.001) ) asymmetric_collision = physics_lib.Collision( elasticity=0.25, symmetric=False, update_angle_vel=False) forces = ( (agent_friction_force, 'agent'), (predator_friction_force, 'predators'), (predator_random_force, 'predators'), (prey_friction_force, 'prey'), (prey_random_force, 'prey'), (predator_attraction, 'agent', 'predators'), (asymmetric_collision, ['agent', 'predators', 'prey'], 'walls'), ) physics = physics_lib.Physics(*forces, updates_per_env_step=5) ############################################################################ # Task ############################################################################ predator_task = tasks.ContactReward( -5, layers_0='agent', layers_1='predators', reset_steps_after_contact=0) prey_task = tasks.ContactReward(1, layers_0='agent', layers_1='prey') reset_task = tasks.Reset( condition=lambda state: len(state['prey']) == 0, steps_after_condition=5, ) task = tasks.CompositeTask( predator_task, prey_task, reset_task, timeout_steps=400) ############################################################################ # Action space ############################################################################ action_space = action_spaces.Joystick( scaling_factor=0.01, action_layers='agent', ) ############################################################################ # Observer ############################################################################ observer = observers.PILRenderer( image_size=(64, 64), anti_aliasing=1, color_to_rgb='hsv_to_rgb', ) ############################################################################ # Game rules ############################################################################ disappear_rule = game_rules.VanishOnContact( vanishing_layer='prey', contacting_layer='agent') portal_rule = game_rules.Portal( teleporting_layer='agent', portal_layer='portals') rules = (disappear_rule, portal_rule, Booster()) ############################################################################ # Final config ############################################################################ config = { 'state_initializer': state_initializer, 'physics': physics, 'task': task, 'action_space': action_space, 'observers': {'image': observer}, 'game_rules': rules, } return config
Get environment config.
Classes
class Booster (mass_multiplier=0.4,
c2_multiplier=0.1,
boost_duration=60,
agent_layer='agent',
booster_layer='boosters')-
Expand source code
class Booster(game_rules.AbstractRule): """Game rule for boosters. This rule makes the agent temporarily brigher in color and lighter in mass (to move faster) upon contact with a booster sprite. """ def __init__(self, mass_multiplier=0.4, c2_multiplier=0.1, boost_duration=60, agent_layer='agent', booster_layer='boosters'): """Constructor. Args: mass_multiplier: Float. Mass of agent after contacting a booster. c2_multiplier: Float. Brightness increase factor upon contacting a booster. boost_duration: Int. Number of steps before boost ends. agent_layer: String. Name of the agent layer in the state. booster_layer: String. Name of the booster layer in the state. """ self._mass_multiplier = mass_multiplier self._c2_multiplier = c2_multiplier self.boost_duration = boost_duration self._agent_layer = agent_layer self._booster_layer = booster_layer def reset(self, state, meta_state): del state del meta_state self._steps_until_expire = np.inf def _apply_change(self, agent): agent.mass *= self._mass_multiplier agent.c2 = 1. - (1. - agent.c2) * self._c2_multiplier def _revert_change(self, agent): agent.mass /= self._mass_multiplier agent.c2 = 1. - (1. - agent.c2) / self._c2_multiplier def step(self, state, meta_state): del meta_state self._steps_until_expire -= 1 agent = state[self._agent_layer][0] if self._steps_until_expire == np.inf: boosters = state[self._booster_layer] if any([agent.overlaps_sprite(s) for s in boosters]): self._apply_change(agent) self._steps_until_expire = self.boost_duration elif self._steps_until_expire <= 0: self._revert_change(agent) self._steps_until_expire = np.inf
Game rule for boosters.
This rule makes the agent temporarily brigher in color and lighter in mass (to move faster) upon contact with a booster sprite.
Constructor.
Args
mass_multiplier
- Float. Mass of agent after contacting a booster.
c2_multiplier
- Float. Brightness increase factor upon contacting a booster.
boost_duration
- Int. Number of steps before boost ends.
agent_layer
- String. Name of the agent layer in the state.
booster_layer
- String. Name of the booster layer in the state.
Ancestors
- moog.game_rules.abstract_rule.AbstractRule
- abc.ABC
Methods
def reset(self, state, meta_state)
-
Expand source code
def reset(self, state, meta_state): del state del meta_state self._steps_until_expire = np.inf
Reset rule at beginning of every trial.
This method can be used to reset any attributes of the rule that serve as memory within trials.
Args
state
- OrderedDict of iterables of sprites. Environment state.
meta_state
- meta_state of environment.
def step(self, state, meta_state)
-
Expand source code
def step(self, state, meta_state): del meta_state self._steps_until_expire -= 1 agent = state[self._agent_layer][0] if self._steps_until_expire == np.inf: boosters = state[self._booster_layer] if any([agent.overlaps_sprite(s) for s in boosters]): self._apply_change(agent) self._steps_until_expire = self.boost_duration elif self._steps_until_expire <= 0: self._revert_change(agent) self._steps_until_expire = np.inf
Apply rule to the environment state.
This method can in-place modify the state however it likes.
Args
state
- OrderedDict of iterables of sprites. Environment state.
meta_state
- meta_state of environment.