Module moog_demos.example_configs.red_green
Red-Green Task.
This task is a variant of the task used in this paper: Smith, K. A., Peres, F., Vul, E., & Tenebaum, J. (2017). Thinking inside the box: Motion prediction in contained spaces uses simulation. In CogSci.
In this task, there is a blue ball that bounces in an enclosed rectangular arena. The arena may have gray rectangular obstacles that the blue ball bounces off. The arena has one green box and one red box. The subject's goal is to predict which of the green/red boxes the blue ball will contact first.
In this particular implementation, the subject moves a token at the bottom of the screen left or right to indicate its choice.
The main entrypoint is the get_config() function at the bottom of this file.
Functions
def get_config(level)
-
Expand source code
def get_config(level): """Get config to pass to environment constructor. Args: level: Int. Number of obstacles in arena. """ if not isinstance(level, int): raise ValueError(f'level is {level}, but must be an integer.') return _get_config(num_obstacles=level, valid_step_range=(50, 150))
Get config to pass to environment constructor.
Args
level
- Int. Number of obstacles in arena.
Classes
class RadialVelocity (speed)
-
Expand source code
class RadialVelocity(distribs.AbstractDistribution): """Radial velocity distribution.""" def __init__(self, speed): """Constructor. Args: speed: Float. Speed of the sampled velocities. """ self._speed = speed def sample(self, rng): rng = self._get_rng(rng) theta = rng.uniform(0., 2 * np.pi) x_vel = self._speed * np.cos(theta) y_vel = self._speed * np.sin(theta) return {'x_vel': x_vel, 'y_vel': y_vel} def contains(self, spec): if 'x_vel' not in spec or 'y_vel' not in spec: return False vel_norm = np.linalg.norm([spec['x_vel'], spec['y_vel']]) if np.abs(vel_norm - self._speed) < _EPSILON: return True else: return False def to_str(self, indent): s = 'RadialVelocity({})'.format(self._speed) return indent * ' ' + s @property def keys(self): return set(['x_vel', 'y_vel'])
Radial velocity distribution.
Constructor.
Args
speed
- Float. Speed of the sampled velocities.
Ancestors
- moog.state_initialization.distributions.AbstractDistribution
- abc.ABC
Instance variables
prop keys
-
Expand source code
@property def keys(self): return set(['x_vel', 'y_vel'])
The set of keys in specs sampled from this distribution.
Methods
def contains(self, spec)
-
Expand source code
def contains(self, spec): if 'x_vel' not in spec or 'y_vel' not in spec: return False vel_norm = np.linalg.norm([spec['x_vel'], spec['y_vel']]) if np.abs(vel_norm - self._speed) < _EPSILON: return True else: return False
Return whether distribution contains spec dictionary.
def sample(self, rng)
-
Expand source code
def sample(self, rng): rng = self._get_rng(rng) theta = rng.uniform(0., 2 * np.pi) x_vel = self._speed * np.cos(theta) y_vel = self._speed * np.sin(theta) return {'x_vel': x_vel, 'y_vel': y_vel}
Sample a spec from this distribution. Returns a dictionary.
Args
rng
- Random number generator. Fed into self._get_rng(), if None defaults to np.random.
def to_str(self, indent)
-
Expand source code
def to_str(self, indent): s = 'RadialVelocity({})'.format(self._speed) return indent * ' ' + s
Recursive string description of this distribution.