Module tests.runtime_benchmark

Run benchmarks and print benchmark report.

This file times various aspects of the environment, such as the physics engine and the renderer, given a task config. It is useful to benchmark new task configs.

Note: To run this file, you must install the tqdm package.

Functions

def main(_)
Expand source code
def main(_):
    """Run benchmarking script."""
    
    config = importlib.import_module(FLAGS.config)
    print('Benchmarking config:  {}'.format(FLAGS.config))
    config = config.get_config(FLAGS.level)

    ############################################################################
    # Benchmark without rendering, using random actions
    ############################################################################

    config['observers'] = {'image': lambda _: None}
    env = environment.Environment(**config)
    print('Environment steps without rendering:')
    def _step_env_function():
        obs = env.step(action=env.action_space.random_action())
        if obs.last():
            return True
        else:
            return False
    _time_env_function(env, _step_env_function)

    ############################################################################
    # Benchmark only resets, without rendering, using random actions
    ############################################################################

    config['observers'] = {'image': lambda _: None}
    env = environment.Environment(**config)
    print('Environment resets, without rendering:')
    def _step_env_function():
        obs = env.reset()
    _time_env_function(env, _step_env_function)

    ############################################################################
    # Benchmark physics only
    ############################################################################

    config['observers'] = {'image': lambda _: None}
    env = environment.Environment(**config)
    print('Physics steps only:')
    def _physics_env_function():
        env.physics.step(env.state)
        return False
    _time_env_function(env, _physics_env_function)

    ############################################################################
    # Benchmark renderer only
    ############################################################################

    def _get_render_env_function(env):
        def _render_env_function():
            env.observation()
            return False
        return _render_env_function

    for image_size, anti_aliasing in _IMAGE_SIZE_ANTI_ALIASING:
        renderer = pil_renderer.PILRenderer(
            image_size=(image_size, image_size),
            anti_aliasing=anti_aliasing,
            color_to_rgb=getattr(color_maps, FLAGS.color_map)
        )
        config['observers'] = {'image': renderer}
        env = environment.Environment(**config)

        print('Renderer steps only, image_size {}, anti_aliasing {}:'.format(
            image_size, anti_aliasing))
        _time_env_function(env, _get_render_env_function(env))

    ############################################################################
    # Benchmark full steps with rendering
    ############################################################################

    def _get_env_function(env):
        def _env_function():
            obs = env.step(action=env.action_space.random_action())
            if obs.last():
                return True
            else:
                return False
        return _env_function

    for image_size, anti_aliasing in _IMAGE_SIZE_ANTI_ALIASING:
        renderer = pil_renderer.PILRenderer(
            image_size=(image_size, image_size),
            anti_aliasing=anti_aliasing,
            color_to_rgb=getattr(color_maps, FLAGS.color_map)
        )
        config['observers'] = {'image': renderer}
        env = environment.Environment(**config)

        print(
            'Full steps with rendering, image_size {}, anti_aliasing '
            '{}:'.format(image_size, anti_aliasing))
        _time_env_function(env, _get_env_function(env))

Run benchmarking script.